Skip to main content

Custom Types: Foundations

Working with domain-specific data often requires extending beyond standard types. The d42 package provides an easy way to define custom types.

Consider an application that needs handle numeric strings, such as "1234". A unique type is required to ensure that these strings contain only numeric characters.

Step 1: Define the Basic Custom Type

First, define the NumericSchema type:

from d42.custom_type import CustomSchema, Props

class NumericSchema(CustomSchema[Props]):
pass

Here, the generic parameter PropsType for CustomSchema holds the properties for custom types. Our numeric type doesn't need special properties, so we'll use the default Props.

Next, proceed to register the custom type:

from d42.custom_type import register_type

schema_numeric = register_type("numeric", NumericSchema)

Now, the custom type is ready for use:

print(schema_numeric)
# Output:
# <NumericSchema>

This is a solid start, but it remains quite basic.

Step 2: Enhance the Custom Type

The d42 package provides options for enriching a custom type with additional functionalities.

A. Improve the Representation

The special __represent__ method is called when repr(schema) is used, providing a custom string representation of the schema.

from d42.custom_type.visitors import Representor

class NumericSchema(CustomSchema[Props]):
def __represent__(self, visitor: Representor, indent: int = 0) -> str:
return "schema.numeric"

Now, it'll look like this:

print(schema_numeric) 
# Output:
# schema.numeric

B. Add Random Generation

The special __generate__ method is invoked for creating random instances of the custom type.

from d42.custom_type.visitors import Generator
from random import randint

class NumericSchema(CustomSchema[Props]):
...

def __generate__(self, visitor: Generator) -> str:
number = randint(0, 2147483647) # int32 max
return str(number)

Test random number generation:

from d42 import fake
for _ in range(3):
print(fake(schema_numeric))
# Outputs might be:
# 1613861680
# 608712493
# 1535820500

C. Implement Validation

The __validate__ method is used to ensure that values conform to the custom type's specifications.

from typing import Any
from d42.custom_type import PathHolder, ValidationResult
from d42.custom_type.errors import TypeValidationError
from d42.custom_type.visitors import Validator

class NumericSchema(CustomSchema[Props]):
...

def __validate__(self, visitor: Validator, value: Any, path: PathHolder) -> ValidationResult:
result = visitor.make_validation_result()

if not (isinstance(value, str) and all(x in "1234567890" for x in value)):
result.add_error(TypeValidationError(path, value, "numeric str"))

return result

Now, it's possible to perform value validation:

from d42 import validate_or_fail
print(validate_or_fail(schema_numeric, "1234"))
# Output:
# True

print(validate_or_fail(schema_numeric, "abcd"))
# Output:
# valera.ValidationException:
# - Value 'abcd' must be numeric str, but <class 'str'> given

Next Steps

In the next article, the focus will be on value substitution for custom types, enhancing their functionality and usability in various scenarios.